Building a Better Place for VA Dementia Patients

Renovations to the Colmery-O’Neil Veterans Administration Medical Center (VAMC) will make accommodations more comfortable for its residents living with dementia and Alzheimer’s disease and provide greater convenience for employees.

Burns & McDonnell was initially slated to design the 18,000-square-foot, 12-bed addition to the center’s Community Living Center (CLC), providing secure access for the residents. Additionally, a separate 6,000-square-foot building was to be designed to house engineering, safety and housekeeping employees.

As design got underway, plans changed. Plans for the detached building were scrapped, and the project evolved into 24,500 square feet of new and renovated space encompassing the addition plus the repurposing of three existing VAMC buildings to accommodate support staff. The dementia/Alzheimer’s addition will house resident rooms, a barber shop, a meditation room, a bistro, a media room, family gathering space and an exam area. It also will improve the flow of traffic within the facility.

"By connecting two ends of the existing CLC, we created a continuous loop of circulation, allowing for shorter routes for medical staff," says Scott Olson, the lead Burns & McDonnell architect on the project.

An existing courtyard will be renovated to provide improved recreational and visiting space, and a new Restorative Garden will be added. Renovations to other buildings will provide more office space for staff and convert two- and three-person rooms to single occupancy.

From the beginning, Burns & McDonnell involved representatives from the VAMC user groups who would be directly affected. "We worked with nurses and doctors from the CLC and other specialists to learn about their concerns — what’s working, what they would like to see changed," Olson says. "With everyone’s input, we could design the space to enable them to better assist residents."

The project has been designed to achieve Silver certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design program. "Multiple sustainable measures were life-cycle evaluated, including exhaust heat recovery, solar domestic water heating and central ground-source HVAC," says David Leever, the project’s lead mechanical engineer. "This installation contributed to 24 percent energy savings at the facility."

Construction on the $10 million project began in October 2012 and is scheduled to be completed in April 2014.

For more information, contact Scott Olson, 816-822-3215.